Name and Surname	:		 	٠.	 	• • • • •	 	
Grade/Class	:	11/	Mathematics Teacher:		 		 	

Hudson Park High School

GRADE 11 MATHEMATICS

November Paper 2

Marks

150

Time

3 hours

Date

November 2020

Examiner: SLT

Moderator(s)

FRD PHL

INSTRUCTIONS

- 1. Illegible work, in the opinion of the marker, will earn zero marks.
- 2. Number your answers clearly and accurately, exactly as they appear on the question paper.
- 3. **NB** • Leave 2 lines open between each of your answers.
- Fill in the details requested on the front of this Question Paper 4. <u>NB</u> and the Answer Booklet.
 - Hand in your submission in the following manner: Question Paper (on top) Answer Booklet (below)
 - o Do not staple your Question Paper and Answer Booklet together.
- 5. Employ relevant formulae and show all working out. Answers alone may not be awarded full marks.
- 6. (Non-programmable and non-graphical) Calculators may be used, unless their usage is specifically prohibited.
- 7. Round off answers to 2 decimal places, where necessary, unless instructed otherwise.
- 8. If (Euclidean) Geometric statements are made, reasons must be stated appropriately.

1. Consider the following set of data:

14 17 19	22 24	27 33	38 40	45 50	70
----------	-------	-------	-------	-------	----

For this data:

1.1. Calculate the

			[11]			
1.4.	Will 70 be an outlier? Justify your answer.					
1.3.	Comment on the distribution of the data. Justify your answer.		(2)			
1.2.	What poor of the n	rcentage of the data lies within one standard deviation ean?				
	1.1.4.	standard deviation	(1)			
	1.1.3.	mean	(1)			
	1.1.2.	interquartile range	(2)			
	1.1.1.	median	(1)			
1.1.	1. Calculate inc					

2. The results of a recent Mathematics Test for the Grade 11's at a certain school were found to be:

Mark %	Frequency	Cumulative frequency
$30 < x \le 40$	2	
$40 < x \le 50$	17	
$50 < x \le 60$	25	
$60 < x \le 70$	36	
$70 < x \le 80$	20	
$80 < x \le 90$	11	
$90 < x \le 100$	3	

		[12]	
2.6.	How many learners achieved more than 84 %? Clearly indicate, on your ogive graph, where any values were read off.		
2.5.	Draw an ogive graph for the data.	(3)	
	2.4.2. 60 th percentile	(1)	
	2.4.1. upper quartile	(1)	
2.4.	State the positions of the		
2.3.	Estimate the mean test result.		
2.2.	State the modal interval.		
2.1.	Complete the cumulative frequency column in the table.	(1)	

3. A(2;3), B(3;1) and C(-1;-1) are shown.

- 3.1.1. Calculate the length of AB, in surd form. (2)
- 3.1.2. Now, if the point D(3,5;d) (not shown in the diagram) is positioned such that AB = AD, calculate the value(s) of d. (5)
- 3.2. Prove that $\widehat{ABC} = 90^{\circ}$. (4)
- 3.3. If B, A and E(e; -8) (not shown in the diagram) are collinear, calculate the value of e.
- 3.4. Determine the equation of AC in the form ax + by + c = 0, where $a, b, c \in \mathbb{Z}$. (4)
- 3.5. Determine the equation of line BF (not shown in the diagram), if BF \parallel AC. (3)
- 3.6. Give the reason why AC is the diameter of the circle passing through points A, B and C. (1)
- 3.7. Determine the coordinates of H (not shown in the diagram), if ABHC is a parallelogram. (2)

[24]

4. A(-5; 0), B(3; 4), NA is a tangent to the circle (whose diameter is AM) at point A.

- 4.1.1. Give the reason why $N\widehat{A}M = 90^{\circ}$. (1)
- 4.1.2. Write down the equation of tangent NA. (1)
- 4.2.1. Calculate the size of θ . (2)
- 4.2.2. Now, determine the size of AĈB. (2)
- 4.3. Write down the coordinates of the midpoint of AB. (2)

[8]

CALCULATORS MAY NOT BE USED IN QUESTION

5.1. Given OP = $\sqrt{29}$ and P(2; y):

- 5.1.1. Calculate the value of y. (1)
- 5.1.2. Determine

(b)
$$\cos(-292^{\circ})$$
 (1)

(c)
$$\tan 68^{\circ}$$
 (1)

5.2. Simplify fully:
$$\frac{\sin 197^{\circ} \cdot \tan 300^{\circ} \cdot \cos(2970^{\circ} + x)}{\sin(-x - 180^{\circ}) \cdot \cos 107^{\circ}}$$
 (6)

5.3. If $\sin 25^{\circ} - k = 0$, where 0 < k < 1, use an appropriate diagram to determine the following, in terms of k:

$$5.3.1. \tan 25^{\circ}$$
 (3)

5.3.2.
$$\tan 65^{\circ}$$
 (1)

[14]

- 6.1. Given: $\left(\frac{1}{\cos x} \tan x\right)^2 = \frac{1 \sin x}{1 + \sin x}$
 - 6.1.1. Prove the given identity. (4)
 - 6.1.2. For which value(s) of x will the given identity not be valid? (2)
- 6.2. Determine the general solution of:

6.2.1.
$$2\sin x + 1 = 0$$
 (2)

6.2.2.
$$\sin(x - 20^\circ) + \cos 2(x + 30^\circ) = 0$$
 (5)

.6.3. The graphs of

$$f(x) = 3\cos 2x$$
 and $g(x) = -\sin 2x$

are sketched below.

6.3.1. Write down the

(a) amplitude of
$$g$$
 (1)

(b) period of
$$f$$
 (1)

(c) range of h, if
$$h(x) = 2 \cdot g(x - 28^{\circ}) - 3$$
 (2)

6.3.2. Calculate the x-values of points A and B. (5)

6.3.3. Use the graphs to solve for x, if $x \in [-90^\circ; 90^\circ]$:

(a)
$$g(x) - f(x) > 0$$
 (2)

(b)
$$f(x).g(x) \le 0$$

6.3.4. Describe the transformation from
$$g$$
 to i , if $i(x) = \sin(2x + 80^\circ)$. (2)

[29]

7. AB = AC = 2y, $\widehat{CDB} = 90^{\circ}$, $\widehat{CBD} = z$ and $\widehat{ABC} = \frac{x}{2}$.

- 7.1. Determine \widehat{A} in terms of x. (2)
- 7.2. Prove that:

7.2.1. area
$$\triangle ABC = 2y^2 \sin x$$
 (1)

7.2.2.
$$CD = 2y \sin z \sqrt{2 + 2\cos x}$$
 (5)

[8]

The (right) solid cone shown below has a radius of 10 cm and a total surface area 8.1. of $100(\sqrt{5}+1)\pi$ cm².

 $A = \pi r h_s$

- Calculate the volume of the cone.
- (6)
- 8.2. The solid (right) circular cylinder shown below has a radius of x cm and a perpendicular height of (20 - 4x) cm.

- Show that the total surface area of the cylinder will be given by: $(-6\pi x^2 + 40\pi x)$ cm² 8.2.1. (2)
- Now, determine the value of x for which the total surface area 8.2.2. will be a maximum. (2)

[10]

9. O is the centre of the circle. CB = BA = 12, BD = 8 and OC = r.

- 9.1. Give the reason why $\widehat{B}_1 = 90^{\circ}$. (1)
- 9.2. Calculate the value of r. (2)

10. TAP is a tangent to the circle at A. AE || BC and DC = DE. $\widehat{TAE} = 40^{\circ}$ and $\widehat{AEB} = 60^{\circ}$

Determine

10.1.
$$\widehat{B}_2$$
 (2)
10.2. \widehat{B}_1 (2)
10.3. \widehat{D} (2)
10.4. \widehat{E}_1 (2)

[8]

11.1. O is the centre of the circle.

Prove the THEOREM which states that $\widehat{AOC} = 2.\widehat{ABC}$

(5)

11.2. O is the centre of the circle. $\widehat{O}_1 = 3x + 65^\circ$ and $\widehat{B}_2 = 2x - 10^\circ$.

Calculate the value of x.

(4)

[9]

12. In the figure, AD and AE are tangents. AC \parallel FD. Let $\widehat{D}_2 = x$

- 12.1. Prove that ABDE is a cyclic quadrilateral. (4)
- 12.2. If it is now further given that EF = DF, prove that:

12.2.1.
$$AE = CD$$
 (5)

12.2.2. ABC is a tangent to the circle passing through points B, F and D. (5)

[14]

TOTAL 150